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The method of matched asymptotic expansions is applied to the problem of a 
wing of ihite span in very close proximity to the ground. The general lifting 
surface problem is shown to be a direct problem, represented by a source-sink 
distribution on the upper surface of the wing and wake, with concentrated sources 
around the leading and side edges plus a separate confined channel flow region 
under the wing and wake. The two-dimensional flat plate airfoil is examined in 
detail and results for upper and lower surface pressure distribution and lift 
coefficient are compared with a numerical solution. A simple analytic solution is 
obtained for a flat wing with a straight trailing edge which has minimum induced 
drag. To lowest order, this optimally loaded wing has an elliptical planform and 
a lift distribution which is linear along the chord, resulting in a parabolic spanwise 
lift distribution. An expression for the lift coefficient at  small clearance and angle 
of attack, valid for moderate aspect ratio, is derived. The analytic results show 
reasonable agreement when compared with numerical results from lifting surface 
theory. 

1. Introduction 
The possibility of using aerodynamic forces to support a high-speed ground- 

transportation vehicle gives rise to an interesting class of problems in which a 
lifting surface translates in close proximity to a solid boundary. Figure 1 shows 
two ground-transportation vehicle concepts which illustrate operation in open 
and enclosed guideways. The finite aspect ratio wing close to the ground 
(figure 2) can be considered the simplest three-dimensional problem in this class. 

The term ‘ram wing’ has been applied to the earliest vehicles which were 
designed to utilize the ground effect principle. Among the first of these was a 
craft builh by Kaario (1935) which was large enough to carry one man, and flew 
successfully over the ice on a lake in Finland. 

Several investigators have attempted solutions to the ground effect problem 
using it variety of methods. An interesting survey of some of the earliest investi- 
gations has been provided by Pistolesi (1937). The two-dimensional problem is 
amenable to solution by complex variables although the solutions obtained tend 
to be unwieldy. The farthest advance along this line is the work by Tomotika, 
Hasimoto & Urano (1951). The linearized problem is also amenable to solution 
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by a distribution of singularities with suitable images placed below the ground 
plane. One of the best examples of this approach for the two-dimensional case 
has been given by Bagley (1960). (This work is a good source of further references.) 
In  three dimensions this method results in a problem suitable for lifting surface 
theory (cf. Ashley & Landahl 1965) with solutions generally requiring a high- 
speed computer. 

Open guideway / 

FIGURE 1. High speed ground transportation vehicles in close proximity to 
solid boundaries. 

All of these approaches are quite reasonable for wings which are not too close 
to the ground, such as might be encountered with an airplane during takeoff or 
landing. However, when a lifting surface is designed to take advantage of ground 
effect the greatest interest lies in very close proximity, and in this case it is 
possible to introduce certain simplifications. Strand, Royce & Fujita (1962) 
showed that for the case of a two-dimensional airfoil in close proximity the flow 
in the narrow region between the wing and the ground, which was termed 
' channel flow ', becomes one-dimensional. This pleasing and simple result has 
one drawback: no method is presented to determine the total amount of mass 
flow under the wing without solving the entire flow problem. 

In the present paper a small parameter E is defined as the ratio of the ground 
clearance to the chord, and the linearized ground effect problem is solved using 
the method of matched asymptotic expansions. It is shown that for a wing at  
angle of attack a, the vertical flow perturbations are of O ( a ) ,  while in the con- 
fined region under the wing this vertical velocity of O(a) induces a horizontal 
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velocity of O(a/e).  In  the case of the two-dimensional airfoil (figure 3) the one- 
dimensional nature of the lowest order solution for the channel flow (preserving 
the notation of Strand) becomes immediately apparent. However, there are 
obviously regions near the leading and trailing edges where the flow reverts to 
a two-dimensional state. Hence, for these 'inner regions' (inner in the sense of 

asymptotic expansions) special expansions are required, which are called edge 
flow solutions. These solutions are matched to the channel flow solution below 
the wing and to the outer flow above the wing. 

Considering the outer region and its image, it is clear that the flow must be 
symmetrical about the line z = 0, z being the vertical, so that in the case of 
c 4 1 the outer flow can be represented by a distribution of sources and sinks 
aiong the z axis. It also turns out that a concentrated source is required at the 
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leading edge, representing the upward deflexion of the stagnation streamline. 
An important feature is that this becomes a direct problem, involving a known 
source distribution, rather than an indirect problem involving an unknown 
vortex distribution, so that even for a general airfoil the difficulties of inverting 
an integral equation are avoided. As shown in $4, for a flat plate airfoil the 
method yields a relatively simple analytic solution which gives the pressure 
distribution over the upper and lower surfaces. 

These ideas are extended to three dimensions. In  this case the flow under the 
wing and trailing vortex wake, which we shall persist in calling the channel flow, 
is two dimensional in the x, y plane. The edge flow solutions must be applied 
along the side edges of the wing and wake as well as along the leading and trailing 
edges. In  the outer region, the flow can be represented by a known distribution 
of sources and sinks on the wing and wake surface plus a distribution of concen- 
trated sources around the leading and side edges, whose strength is determined 
by matching. 

The method can be extended to cover more complex configurations operating 
in enclosed or open guideways to obtain analytic predictions of the aerodynamic 
characteristics of these vehicles. The ground effect theory which follows from 
showing that the channel flow is two dimensional in the x, y plane forms an 
interesting complement to Jones’s slender body theory and Prandtl’s lifting line 
theory, in which the flows are basically two dimensional in the y, z and x, z planes, 
respectively. Both of these classical perturbation theories, incidentally, can be 
derived using matched asymptotic expansions (Van Dyke 1964 and Ashley & 
Landahl 1965). 

2. Problem formulation-the general problem 
The b i t e  wing in close proximity to the ground in an incompressible flow is 

sketched in figure 2. There are two possible versions of this problem for the region 
beneath the wing, the linear and non-linear problems. In  the linear problem, the 
displacements of the under surface must be small in comparison to the clearance 
to chord ratio. This version is compatible with linearized lifting surface theory 
in which the lowest order solution everywhere is a free stream and the upwash 
boundary conditions are satisfied on the mean plane of the wing, at a height 6 

above the ground. In  the non-linear problem, the displacements of the under 
surface are of the order of the clearance. The lowest order solution for the flow 
beneath the wing is not a uniform stream and the flow tangency boundary condi- 
tion must be satisfied on the actual lower surface. This latter problem is more 
difficult and is currently under investigation. The linear problem will be examined 
in this paper and the results compared with numerical lifting surface theory. 

The wing upper and lower surfaces are described by 

Xl(x, y, z )  = z - &x, y) = o 
Su(x, y, x )  = z - &(x, y) = o (2.1) ) 

on lower surface, 

on upper surface, 

where fu,l(x, y) = 1 + (c~/e)S, ,~(x ,  y), &Jx, y) is an O(1) function describing the 
distribution of camber, angle of attack and thickness on the airfoil. x, y, z are 
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co-ordinates normalized by the midchord of the wing, E is the ratio of height to 
chord and the subscripts 1 and u denote lower and upper surface respectively. 

The boundary condition of flow tangency is 

V @ .  V S ,  @, y ,  4 = 0 on flu, &, y, z )  = 0,  ( 2 . 2 )  

On the ground we require a@pz  = 0,  (2.3) 

v20 = 0. (2.4) 

where CD is the velocity potential normalized by U ,  satisfying Laplace's equation 

To determine a perturbation solution valid for the region beneath the wing 
where z is O(s) ,  the z co-ordinate is stretched. That is 

where @" is the potential in the channel under the wing. The governing equation 

(2.6) 

for QC becomes 
+ ViD @' = 0, 

1 a w e  

€2 a22 
-__ 

where V, is the two-dimensional operator i ajax + j ajay. The boundary condition 
of flow tangency on the lower surface for Oc is 

There are two small parameters in this problem, a) the angle of attack, and 
E ,  the clearance. If a N O(e), the boundary conditions must be satisfied on the 
actual under surface of the wing, if a N o(e), a Taylor series expansion of the 
boundary conditions about X = 1 is permitted (Van Dyke 1964) and an ordinary 
linear lifting surface problem is obtained. To compare with numerical lifting 
surface theory, only terms linear in a would be appropriate. 

An asymptotic expansion of the form 

O"(X, y, Z) = x + (a/€) (by + afl(E) (25; +a& + . . . 
+ a& + as"fi(s) $: + a€"; . . . ) (2 .8 )  

or @ C ( X ,  y, X) = x + ap 
will be assumed. In the actual development of the solution, the form of the series 
was determined at  each stage in the process as outlined in Van Dyke (1964). 
From the matching with the edge solutions, fl(s) turns out to be In (I/€). $;, & 
and q5: will determine the lift coefficient on the wing to O(a). Equation (2.6) relates 
each &?%to a Prn two powers higher in e. Thus, as will be seen, to solve for +1, rP2 and 
4, it is necessary to obtain the form of #4, #5 and +6. Intermediate solutions 
lying between q53 and q54 will not affect this procedure. The first non-zero boundary 
condition from (2.7) is applied to &. 

Before examining further the flow beneath the wing we consider the outer 
flow, which is a straightforward thin wing flow in both the linear and non-linear 
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problems (Do = x+aqP+ .... 
The boundary condition to be satisfied on the plane z = 0 are 
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- = -a,(x,y) a t  x = 0 on W ,  

- = 0 elsewhere, 

az 

ap 
az 

(2.10) 

where S and W are the projections of the wing and wake surfaces on x = 0. 
ai(z, y) is the induced downwash in the wake due to the trailing vortex system. 
The singularities used to satisfy these boundary conditions are sources and sinks 
rather than the elementary horseshoe vortices which appear for the lifting 
problem for a wing far from the ground. In addition to the distribution of sources 
and sinks there are eigensolutions, concentrated sources (or sinks) of unknown 
strength located around the leading edge of the wing and side edges of the wake. 
These are absent a t  the trailing edge of the wing to lowest order because of the 
Kutta condition. Their purpose is to replace the fluid which has been removed 
by the excess of distributed sinks on the wing and wake surfaces. All of the 
properties of the outer flow potential qP can be found by solving lower order inner 
problems. The important feature of the outer flow is its very weak, O ( a ) ,  influence 
on the inner flow. Because of this the Kutta condition requires a&/t?x = 0 at the 
trailing edge. 

We now state the sequence of problems and boundary conditions associated 
with the flow beneath the wing and wake. Substituting the assumed form (2.8) 
of (Dc into the governing equation (2.6) and equating like functions of B gives 
a very simple set of partial differential equations for the &'s. 

= 0 (0 G n G 3). (2.11) 

(2.12) 

Since a@/& = 0 at 7 = 0, the solutions to these equations are simply functions 
of x and y. 

For the next order solutions the governing equations are 

& = +E.(x,y) (0 < n d 3). 

(2.13) 

where & is, a t  this stage, some arbitrary function of x and y. We now apply the 
flow tangency conditions on the under surface of the wing. This will give a set of 
equations for the unknown functions #: (n = 1,2,3) .  The boundary conditions 
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for these equations are obtained by matching with the outer flow around the 
edges of the wing and wake surfaces through an edge flow region. The flow 
tangency condition of (2.7) expanded as a Taylor series about X = 1 becomes 

= ~ a v ~ ~ ~ ( x ,  y) . v2D @."(x, 9, 1) + . . . . (2.15) 

Using the assumed form for QC and equating like functions of a and 8, the 
bounda,ry conditions for #: become 

The boundary conditions for & and q5; are 

(2.16) 

(2.17) 

Using the solutions for &, 4: and 4: of (2.14) in (2.16) we obtain essentially a set 
of partial differential equations for &, q5; and 4:. For &(x, y) 

(2.18) 

Physically this equation can be interpreted as conservation of mass in the two- 
dimensional region beneath the wing with known distributed mass addition 
provided by the flow tangency boundary condition on the lower surface. 

From the boundary conditions of (2.17) and the relation between q5; and q5; 
and 4' and q5: given by (2.14), 4; and q5: satisfy Laplace's equation 

(2.19) 

i.e. two-dimensional potential flow under the wing. 
Across the trailing vortex wake, the discontinuity in potential, Aq5, must be 

a function of y only. Since the outer flow perturbations are O(a), the perturbation 
potentials q5E and &, which are valid beneath the wake for distances behind the 
trailing edge greater than 6 ,  are likewise functions of y only. However, q5; is in 
general a function of x and y since the outer flow potential q5: which contributes 
to Aq5(y) is a function of x near the wing. In the wake, (2.18) and (2.19) become 

(2.20) 

These equations are interpreted as equations for the induced downwash ai for 
a known vortex strength in the wake; a2i and aai are higher order contributions. 

T o  summarize, the relations, equations and flow tangency boundary conditions 
have yielded (2.18) and (2.19) for the lowest order solutions $,"to $2. The equation 
governing q5i is that of conservation of mass in the two-dimensional channel 
beneath the wing with a known mass addition. The other functions are governed 
by Laplace's equation for two-dimensional potential flow under the wing with 
no mass addition. From these solutions we can find the expression for the pressure 
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on the underside of the wing. We can also solve for the structure of the wake and 
the strength of the edge sources in the outer flow. Inspection of the outer flow 
and edge flow solutions indicates that  the boundary condition to be satisfied on 
the edges of the two-dimensional channel which represents the underside of the 
wing and wake are 

(2.21) 1 @ = 0 
a&/ax = 0 

a t  the leading and side edges, 

a t  the trailing edge. 

The boundary conditions on & and $; on the edges bounding the confined region 
under the wing are more complex and must be obtained from matching with the 
outer flow potential qP through the edge flow solutions. 

v = + l  

FIGURE 4. Two-dimensional incompressible edge flow problems valid near the end of a flat 
wingingroundeffect. (a)EOnth,,!,,, = u + ( l / n - ) [ l - e u n ] ;  (b)Zontheplate = Q+(l /n-)[1-e6n] .  

3. Edge flow solutions 
As previously discussed, the flow near the edges of the wing assumes a form 

different from either the outer flow or the channel flow and these regions require 
special inner expansions. For a two-dimensional flow in the x, x plane, these are 
obtained using the magnified complex variable 

- 
Y = ?E+iix, 

where 5 = x/e  and 2 = xle. That is, we now magnify x as well as z in order to focus 
on the properties of the inner region near the edge. For a general three- 
dimensional wing, 5 would be replaced by a local co-ordinate ?z normal to the 
edge. 
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The edge flows may be written in the following form (see figure 4) 

@ = + aI$B + + a3j (3.1) 

where q9 = potential in the inner region, 
$A = solution which satisfies the downwash condition a$/& = - 1 on 

$B = eigensolution with homogeneous boundary conditions-no velocity 
the wing, 

normal to the wing or the ground, 
5 = a local free stream, 

a, = constants to be determined by matching. 

The solutions $A and $B may both be obtained using the following trans- 
formation 

where 

This transformation leaves the ground unchanged and transforms the wing 
1. To obtain the eigensolution, the complex and its image on to the lines 

potential for a uniform flow in the p plane is transformed on to the 7 plane 
= 

where 

Eliminating 7 between (3.2) and (3.3) gives 

(3.3) 

Since eB = U on Z = 1, we can substitute H = Z + i  and F = q5B+iU and 

(3.5) 
$B 2 = -+- [1-en@~/u]. 

obtain for the wing 

u 7 r  

This gives an inverse relation between X and $B on the wing. 

cases of large x. As $B+ 00 the exponential dominates and we obtain 
For matching it is only necessary to invert this relation for the asymptotic 

Here the subscript u has been added since this represents the potential on the 
upper surface of the wing. For the lower surface q5 --f - co. The exponential decays 
giving 

These asymptotic limits must match the outer flow and the flow under the wing 
respectively. 

The solution for #A follows a similar development except that the complex 
velocity is transformed, rather than the complex potential. The required 
boundary conditions are obtained from simple corner flow in the 9 plane. Take 

$BI u{z - ( /r)>* (3.7) 

W(7)  = u-iv  = 7. 
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This is transformed to the 
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plane using (3.2) 

P = W + (l/n) [I + enw]. 

On the wing, v = - 1, so that W = u+i and 7 = %+i.  Substituting 

I = u+(l/n)[l-eenu],  (3.9) 

as before, we obtain asymptotic limits and attach appropriate subscripts : 

u, N (l/n-)ln InXj, 

ul N z- (l/n). 

The corresponding asymptotic values of the potential are as follows: 

#Au (W ln ( 7 4  - (Z/n), 
$bal N 4%'- (%/n). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

4. The two-dimensional wing in ground effect 

one dimensional. For a flat plate airfoil (2.19) becomes 
This problem is particularly amenable to solution since the channel flow is 

d2# , " ldX2  = 1. 

4; = t X 2  - x. 

This equation plus the boundary conditions (2.22) allow us to write the 
first-order solution directly 

The pressure distribution obtained from this solution is linear as shown in 
figure 6. It is worthwhile to note that to this order (i.e. ale) the perturbation 
velocity at the trailing edge is zero and hence free-stream conditions are obtained 
there. This observation alone is sufficient to yield a fist approximation for the 
mass flow under the wing which gives the velocity everywhere in the channel from 
simple one-dimensional mass continuity. Referring now to figure 3, this flow 
model corresponds to a solution in which the rear stagnation streamline proceeds 
horizontally straight back from the trailing edge. It is obvious, however, that the 
downward momentum of the outer flow will actually cause this streamline to 
asymptote to a horizontal line somewhat below the height of the trailing edge, 
as shown, so that the mass flow in the channel must actually be somewhat less 
than this simple first approximation. In  order to determine how much less, one 
must examine the outer flow. 

The perturbation potential @ introduced in (2.9) must have unit downwash 
on the wing and, in addition, must satisfy global mass conservation. The down- 
wash condition is satisfied by a linear distribution of sinks; to satisfy mass con- 
servation one can add concentrated sources at  the leading and trailing edges 
with a total mass flow equal to the mass intake of the sinks. Such concentrated 
sources in the outer flow correspond to the eigensolution q5B in the inner flow, 
whereas the edge of the linear distribution corresponds to $A. Because of the 
fact that q513 exhibits an infinite velocity at P = i, the Kutta condition serves to 
rule out the possibility of an eigensolution at  the trailing edge, so that in the 
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outer flow no concentrated source is allowed there, and the leading edge must 
have a single source of strength two. The complex potential for this flow can be 
written directly as 

1 
ln(Y-Y,)dY,+-lnY. 7r (4.1) 

The perturbation potential evaluated on the upper surface of the wing, z = 0, 

(4.2) 
1 

is then 
q~ = 71 [(x - 1) In (2) + 11 . 

Trailing edge 

\ -  
I / - 1  / 

X X I .  

FIGURE 5. Order of matching for the two-dimensiorial wing in ground effect. 

In  order to obtain a solution valid to O(a) in the channel flow, it is necessary to 
solve for three terms of the series (2.8) 

1 
P = s 4; +f,(4 4; + 4;. (4.3) 

The equations (2.19) governing the higher order terms become 

(4.4) 

These equations assure that the only change in the channel flow is a small differ- 
ence in the total mass flux under the wing. The pressure distribution remains 
linear although displaced somewhat, as shown in figure 6. 

At this stage one can formulate a strategy for matching the various regions of 
the flow. This will be done in the following four steps as shown in figure 5 :  

(i) Apply the Kutta condition at  the trailing edge and match the edge solution 
to the outer flow. 

(ii) Match the channel flow to the trailing edge region. The velocity here must 
match to the velocity above the trailing edge, which gives a boundary condition 
for dqV/dx at the trailing edge. There is an unknown discontinuity in the potential, 
however, due to the circulation. 

(iii) Match the outer flow to the edge flow above the leading edge. 
(iv) Match the edge flow to the channel flow below the leading edge. 
This gives the boundary condition for qV at the leading edge. 
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In actual fact this sequence for the matching is not unique. The mathematical 
solution of the problem simply requires expanding of all the solutions in each 
region and matching in the four overlap regions shown in figure 5. This order was 
chosen, however, because it lends some insight into how the outer flow influences 
the edge flow solution above the wing, and the edge flow thus provides a boundary 
condition for @ under the wing. These boundary conditions affect & and $& but 
not &. The outer solution itself is driven by &, which may be considered the 
cause of the leading edge source. Conceptually, it is much easier to think of the 
matching process as ensuring that the velocity is continuous everywhere (except 
right at  the leading edge), although it turns out that the potential is more 
convenient mathematically. 

Step (i). The Kutta condition at  the trailing edge is imposed by stating that 
no eigensolution exists, since this solution gives infinite velocity at  the edge. 
The solution is satisfying the downwash boundary condition, plus a uniform 
stream and a constant. The trailing edge variable xT is used as in figure 5. 

$LL = (1 /4  +i. + c 2 ( 4  +sg,, (4.5) 
where the factors l /n  and 6 are written for convenience. 

This is written in outer variables and expanded to O( I )  for the upper surface 
of the wing using (3.12) 

yzu =,[xr( lnx~+ln---+c,- l  1 7l 

8 

&$! is the outer limit of the inner solution near the trailing edge on the upper 
surface of the wing. The outer solution in the inner variable Z, is obtained from 

Expanded to  O(s)  and re-expressed in outer variables, this is 

(4.7) 

Using the limit matching principle, must equal ~PJ which gives 

c1 = l- ln(r/c);  c2 = 1. (4.9) 
Selection of the constants in this manner establishes a smooth joining of the 

potential from the outer flow to the trailing edge region. It is now possible to 
determine just what influence the edge flow will have on the channel flow. 

Step (ii). Beneath the trailing edge the potential is also given by (4.5) with the 
addition of the potential jump across the wake due to the circulation I'. 

(4.10) 

This is expressed in the channel (or outer) variable z and expanded to O(1) for 
the region below the wing using (3.13). The resulting expression q'~$ is interpreted 
as the limit of the inner trailing edge solution as it tends toward channel flow. 

-x,ln-+1 -r. " I  E 
(4.11) 
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This limit must equal the channel flow limit at the trailing edge. Since the value 
of the channel flow velocity rather than the potential is fixed by the Kutta 
condition, (4.11) gives the boundary condition at x = 1, 

d p  1 77 _ -  - -- ln-,  
dx 7r E 

Also f l k )  = In (W. 
The boundary conditions for the individual terms become 

d#g/dx = - (114 Inn. 

d$ydx = 0, 
d&/dx = - (1/m) 

(4.12) 

(4.13) 

Step (iii). The matching over the leading edge is similar to step (i), except that 
the eigensolution is now allowed and all solutions are written in the leading edge 
variables. The solutions for the edge region are obtained from (3.5) and (3.9) 
(with appropriate sign changes, since the picture in figure 4 must be reversed). 

The potential in the inner leading edge region is, using (3.1) 

9 = $B + (l /n) [ C a ( E )  €Z + C4(E)1+ .#a. (4.14) 

The matching to the outer solution in the region above the leading edge proceeds 
by expressing in the outer variable x and expanding to O(1) above the edge. 

(4.15) 

It is useful to write U(E)  = U, + eU,. When this is done and the resulting expression 
rearranged we obtain to O( 1) 

The inner limit of the outer solution can be obtained from (4.2). 

(4.17) 
1 qF = ;[lnx-xlnx+x+ 11. 

Comparison between (4.16) and (4.17) gives 

u, = 1, 

c3 = lnn-/e, 

c4 = 1-lnn/e. 

Step (iv). For the final step in the matching, the inner flow near the leading 
edge is expanded into the region under the wing, giving a second boundary 
condition to determine qV and hence I?. 

The expression for 9 given by (4.14) is now expanded in outer or channel 
variables below the wing using the asymptotic forms for and $B valid beneath 
the wing given by (3.7) and (3.13). To 0 ( 1 )  

2 2  x 
= 5-:- (4.18) 
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Applying the limit matching principle to (4.18) gives a boundary condition for 

(4.19) 
9" at  the leading edge 

@ ( O )  = --In-. 
1 7 7  
7 7 €  

As in (4.13), the boundary conditions for the individual terms are 

(4.20) 

FIGURE 6. Upper and lower surface pressure distributions on a flat plate in pound effect, 
c = 0.1. __ , numerical solution and third-order composite solution indistinguishable; 
_-___  , first-order solution. 

The boundary condition of (4.12) and (4.19) determines the final expression 
for qP, 

X 2 X X 7 7 1 n .  @ = g - ; - ;  In - - 77 - In - . 

By comparing (4.21), (4.11) and (4.18) we obtain 

and 

77 

1 1  7r r= -+-  2 I n - + 1 .  
2E: 77[ E 1 

(4.21) 

(4.22) 

Remembering that I? as written here is the circulation normalized by a,  the lift 
coefficient is 

cL = 2ra = ~ + ~ ( 2 l n ~ + l ) .  & 7 7  (4.23) 
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A uniformly valid composite solution for the flow above the wing can be con- 
structed as follows: 

A similar formula holds below the wing with qP substituted for qP and $!jl 

substituted for q&, etc. 

4 = (phU - &?) + ( p  - $90) + 9. 

-5  

0 

5 

10 

FIGURE 7. Upper and lower surface pressure distributions on a flat plate in ground effect, 
B = 0.5. -, numerical solution; ----, composite solution. 

The upper and lower surface pressure distributions predicted from these 
composite solutions were compared with a numerical linearized thin aerofoil 
solution which used a Glauert series with six terms and nineteen downwash 
control points. Boundary conditions were satisfied in the least-squares sense and 
the ground was represented using the method of images. Figure 6 shows the 
comparison for a height to chord ratio e = 0-1; the agreement is essentially per- 
fect. The pressure under the wing is linear over most of the chord with the edge 
flow solutions providing the proper local behaviour at the leading and trailing 
edges. Figure 7 shows the comparison for E = 0.5. The agreement is remarkably 
good for this latter clearance, considering that the ‘inner edge’ regions for this 
case are so large that they essentially overlap. The outer flow gives a significant 
contribution to the lift. 

The lift coefficient to O(1) given by (4.23) is shown in figure 8 in comparison 
with the numerical results. It is necessary to plot CLei. versus E in order to 
clearly indicate the behaviour at  E = 0. Strangely enough, figure 8 does not 
reflect the same accuracy as the pressure coefficient results. This is surprising as, 
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presumably, (4.23) simply represents an analytic integration of pressure distri- 
bution. The resolution of this anomaly is obtained by proceeding to the next 
higher order, i.e. O(slns).  It is found that a source and a doublet must be added 
to the leading edge in the outer flow, and a sink to the trailing edge: 

z 'I qP =n[(~- l ) ln(Z)+1]+l r21n~[ lnz- ln( l -z )+-  1 1 - 2  8 . (4.24) 

/ 4.0 - 
// 0' 

3.0 - 
-5. 
3 

/' 
//' I I I I I 

O ?  0.1 0.2 0.3 0.4 0.5 

Height 
Chord 

E N -  

FIGURE 8. Lift coefficient for a two-dimensional flat plato airfoil in ground effect. --0--, 
numerical solution; ---, solution to O( 1); -, solution to O ( s 1 n ~ ) ;  ----, free stream 
limit CLe/a + 2 ~ s .  

It is not worth while to go into the details of the matching which follow the 
previous analysis fairly closely. A small increment to the circulation is obtained. 

(4.25) 

The important point is that nearly all of the difference between (4.23) and (4.25) 
arises from constants which are added to qP as the solution is carried out to 
O(s1ns) and O(sln2 E). The velocity and pressure under the wing are unaffected to 
this next order. These constants represent additional contributions to the total 
lift from the leading edge region. The addition of these higher order constants 
to @ considerably improves the agreement with the numerical solution, as shown 
in figure 8. 

The above analysis provides a base for the examination of the three- 
dimensional lifting surface problem. It has revealed the nature of the flow 
beneath the wing, the nature of the edge flow regions, and the influence of the 
outer flow. Comparison with the numerical solution indicates the accuracy of 
the predicted pressure distribution and total lift. 
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5. Three-dimensional flat wing ground effect 

close to the ground. 

the wing are 

We now consider the case of a flat plate wing with a straight trailing edge 

To lowest order, the expressions for the velocity potential above and below 

a 
CDo = x+a&+ ... and cDc = x+-&+ .... (5.1) 

€ 

&, which determines the essential features of the flow, is unaffected by the outer 
flow. For a flat wing, the function describing the shape of the lower surface is 

gdx, Y) = - x- (5 .2 )  

Equation (2.19) becomes V $ M X > Y )  = 1 ( 5 . 3 )  

for the flow under the wing, with boundary conditions given by (2.22). This 
problem is sketched in figure 9. The flow tangency condition adds a net mass 
Aow to the region under the wing. Because of the Kutta condition this flow 
cannot escape at the trailing edge but must go forward and escape via the 
leading and side edges. Thus the velocity under the wing is lower than froe 
stream and lift is produced. 

so F L M  41 
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The solution to (5.3) is 

# = i(x2 + Y2) + +2&, Y) + c, (5.4) 

where q520 is any two-dimensional potential flow function and C is a constant. 
It is simplest to take an inverse approach, choosing a potential @ and solving 
for the wing plan-form by applying the boundary condition (2 .22)  along the 
leading and trailing edges. The form of the particular solution and the trailing 
edge boundary condition suggest the function 

(620 = A [x2 - y21, (5 .5)  

the potential function for corner flow. This assures that (5.4) satisfies the Kutta 
condition a&/ax = 0 at x = 0 so that the trailing edge lies along the y axis. The 
equation for $1" can be manipulated into the form 

where C has been chosen to satisfy the leading edge boundary condition at  
x = - 1, y = 0. A = & corresponds to an infinite aspect ratio wing in ground 
effect, A = - $ corresponds to a wing of zero ratio, although the theory is not valid 
for AR N O ( E ) ;  A R  is the aspect ratio (2b)2]area, where b is the semispan/chord 
ratio. 

Applying the condition #: = 0 gives the equation for the leading edge 

&E + (YLE/b)2 = 1, 

which is the equation of an ellipse with 

b = [($ + A ) / ( $  - A)]*. 

After solving for A ,  the potential 4: for a flat elliptical wing becomes 

In the wake &(y) has the value 

(5.7) 

(5.8) 

(5.9) 

The spanwise distribution of circulation to this order is r ( y )  = - (a /€)  $$(y). 

ryY) = (~)'"[i-($~] E 2b2+1 (5.10) 

since the outer flow perturbations are O(a). Thus, the variation of lift along the 
span is parabolic. 

The lift coefficient, lift/+pUL area where Urn is the free-stream velocity, of 
this wing is 

(5.11) 

The semi-circular wing, b = 1, has half the lift coefficient of the infinite wing. 
The results for b/c  -+ cg do not approach the two-dimensional results since the 
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wing remains elliptic in this limit. Although the flow becomes locally two dimen- 
sional, since the outboard chords are shorter in comparison to their height above 
the ground, the lift decreases in proportion to the square of the local chord in 
contrast to the infinite fluid case. For a two-dimensional wing to lowest order 

whereas for blc + co a 8  
E 37l 

c,=--. 

(5.12) 

(5.13) 

To this order, all of the lift comes from the increased pressures on the bottom 
of the wing. As in the two-dimensional case, the distribution of lift is linear along 
the chord to lowest order, although at  a reduced magnitude due to the finite span. 
The spanwise lift distribution produced by the elliptical wing is parabolic 
because a lift distribution which is linear with the same slope along every chord 
produces a local lift proportional to the local chord squared. Since 

C(Y) 11P - (Y/b)21 

the lift distribution L(Y) 1 - (Y/b)2. 

Figure 9 shows the flow perturbations associated with this solution for a flat 
elliptical wing. The downwash boundary condition on z = E induces a horizontal 
flow in the region below the wing. I n  the three-dimensional case, there is the 
additional feature of a trailing vortex wake. For this wing, the induced downwash 
ai(y) as given by (2.20) is constant in the wake and of magnitude 

a, = l / ( b 2 +  1).  (5.14) 

For b approaching infinity, ai(y) goes to zero which is the proper limit for infinite 
aspect ratio; for b approaching zero, ai goes to one, the slender body limit. 

Since the induced downwash in the wake is constant, this wing has minimum 
drag for a given lift. An exact solution to the Trefftz plane flow of a wing in 
ground effect has been found by Haller (1936), who also obtained the result that 
the optimum lift distribution becomes parabolic as the clearance goes to  zero. 
It is a curious result that the elliptic plan-form is optimal for a wing in ground 
effect for all aspect ratios. The problem of minimizing induced drag for a variety 
of vehicle guideway configurations with small clearances has been discussed by 
Barrows & Widnall (1970). 

The matching procedure applied to the two-dimensional problem can also be 
applied locally to the edges of the three-dimensional wing. The perturbation 
velocities of &(x,y) are normal to  the leading and side edges and the two- 
dimensional edge flow solution can be applied to lowest order since the radius of 
curvature is of O( l),  which is large in comparison to the width of the edge flow 
region, of O(E).  The details will not be carried out here; the results will be stated 
with reference to the two-dimensional results. The outer flow potential qP can 
be constructed from a known distribution of sources and sinks located over the 
wing and wake. Matching the channel perturbation potential to this outer flow 
through local normal edge flows gives a boundary condition on aq!F/ax a t  the 
trailing edge and q!F a t  the leading edge. 

:o-2 
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At a point s on the leading edge the inner limit of the outer solution will be 

(5.15) 

where n is a local normal co-ordinate. U(s )  is the local normal velocity, aq52/an. 
A(s)  is the O( 1) effect due to distant sources. Matching this expression through 
a local edge flow solution gives the boundary conditions for @ at the leading edge. 

(5.16) 

Similarly, for a trailing edge in three-dimensional flow, the outer flow solution 
will behave locally as 

(5.17) 

The first term comes from the discontinuity in sink strength a t  the trailing edge 
where the downwash changes from a to ai as indicated in figure 9. B ( y )  and C(y) 
are O(1) effects from distant sources. Matching this through a local trailing edge 
solution gives a boundary condition for ap/ax a t  the trailing edge to O(1). 

1-a, 7r 
lnG + C(y). a@ - ( O )  = -~ 

ax 7r 
(5.18) 

Restating the governing equations for the individual terms in the expansion of 
(2.7) for p, the potential beneath the wing, we have 

(2.18) 

(2.19) 

The matching has provided the boundary conditions for these equations to be 
applied at  the leading and trailing edges. At  a leading edge 

(5.19) 

At a trailing edge 

(5.20) 

With these equations, the lifting surface problem for a wing in close proximity 
to  the ground becomes a direct although perhaps tedious problem. 

It is of interest t o  carry the semicircular wing to next order. This can be done 
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relatively simply because +;/an is constant around the leading edge for this 
particular case. Stating the problem for $;(x, y), we have 

I 1 
& = - at the leading edge, (5.21) 

J _ -  w _ - -  1 at the trailing edge. ax 2n 

The solution can be found using complex variable image techniques, 
Using z = y - i x  for convenience 

- ( z - l ) l n ( z - - l ) +  
2n2 

+ ( z + l ) l n ( z + l ) -  

The value of &(y) along the trailing edge gives the additional circulation I?&), 

1 
I’,(y) = -ah -$$  = (5.23) 

8 

The additional contribution to the lift is 

For a circular wing to O(u In e )  

(5.24) 

(5.25) 

The next term would be O(1) and would involve contributions for both the 
upper and lower surfaces. 

6. Comparison with numerical lifting surface theory 
Numerical calculations for two elliptical wings with straight trailing edges in 

an infinite free stream and in ground effect were performed using the method 
discussed by Ashley, Widnall & Landahl(l965). Two wings were chosen having 
semispan to chord ratios of 1 and 0.5. The numerical method was developed for 
wings in an infinite fluid with moderate aerodynamic influence. from nearby 
surfaces. It was felt that for this technique convergence could not be assured 
much below e = 0.05. Of course, this region of strong influence is just where the 
analytic solution is expected to be valuable. The numerical results for lift 
coefficient are summarized in figure 14. 

For the wing in ground effect, CLe/a is plotted versus e to  focus on the behaviour 
for small clearances. The first-order linear theory predicts CLela to be a function 
only of aspect ratio. The limits for b/c = 0.5 and 1.0 are indicated at B = 0. For 
large clearances CL approaches the free stream limit CLm so C,E/a increases 
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linearly with E .  This asymptote, C,, e/tC is indicated in figure 10. The results of 
the numerical lifting surface calculations for the two finite wings in ground effect 
are shown for E = 0.05, 0.1, 0.3 and 0.5. 

0.1 0.2 0.3 0.4 0.5 

Height 
Root chord 

E N  

FIGURE 10. Comparison of numerical lifting surface theory with the analytic solution for a 
flat elliptical wing in ground effect with clearance E. --a--, numerical solution; m, lowest 
order solution; -, two-term solution; ---, free stream limit CLS/U +CL= e/a. 

The numerical results indicate a reasonable approach to the e = 0 limit. For 
finite values of E ,  however, one is tempted to proceed to higher order in e, the 
next terms in the expansion for CLe/a being N O(e1ns) and O(E).  This proved to 
be quite easy for the semicircular wing and the two-dimensional wing because 
the perturbation mass flow normal to the edges is constant. 

The two-term expansion for the semicircular wing as given by (5.25) is shown 
in figure 10 and shows reasonable consistency with the numerical results, 
although one more term in the expansion would be required for the same quality 
of comparison as shown for the two-dimensional results. 

A comparison of the lift distribution on a semicircular wing in ground effect 
as predicted by the simple first-order theory and as obtained using numerical 
lifting surface techniques is shown in figure 11 for a height to root chord ratio 
e = 0.05. The &st-order theory gives the simple linear lift distribution. The 
lifting surface result contains the proper leading and trailing edge behaviour 
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which would appear in the analytic solution for higher orders in E as in the two- 
dimensional case. The agreement is quite good in those regions away from the 
edge. 

FIGURE 11. Comparison of analytic and numerical results for lift distribution on a semi- 
circular wing in ground effect, E = 0.05. -, first-order theory; ---, numerical lifting 
surface theory. 

7. Summary and conclusions 
Usingithe method of matched asymptotic expansions, the linearized lifting 

surface problem for a wing very close to the ground has been formulated, Unlike 
the lifting surface problem in an infinite fluid, the lifting problem close to the 
ground is a direct problem involving a source/sink rather than a vortex distribu- 
tion. Flow in the confined region beneath the wing and wake is a two-dimensional 
channel flow with known boundaries and known mass addition, coming from the 
flow tangency boundary condition on the lower surfaces. The thickness and 
lifting problems do not decouple for a wing in strong ground effect, in fact, to 
lowest order the lift coefficient is only a function of the shape of the wing lower 
surface and planform. 
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The two-dimensional linearized flow problem for a lifting flat plate close to 
the ground is particularly amenable to solution by this method. Analytic solu- 
tions may be obtained up to fourth order (i.e. s h e )  without undue difficulty. 
Higher order terms are available, although their usefulness is questionable. The 
third-order result for the pressure distribution on the upper and lower surfaces 
are remarkably accurate, showing good agreement with numerical calculations 
for clearances as large as e = 0.5. The singularity at  the leading edge shown by 
the flat plate solution could be removed by a method similar to Lighthill’s 
technique for correcting flows around blunt leading edges. 

A remarkably simple analytic solution is obtained in the case of an optimally 
loaded flat elliptical wing with a straight trailing edge. The lift distribution for 
minimum induced drag is a distribution which is linear along the chord, dropping 
to zero at the trailing edge to satisfy, to lowest order, the Kutta condition. An 
analytic expression (5.13) gives the lift coefficient of such a wing to O(l/e);  this 
equation is valid for all aspect ratios greater than e. 

For the semi-circular flat wing the flow perturbations can be found analytically 
to O(lne) giving a two-term expansion for C,. The analytical results are com- 
pared with numerical results from lifting surface theory for a finite wing in ground 
effect. For good accuracy up to E = 0.1, the solution should be carried to O(a). In 
the expected range of operation of high speed ground transportation vehicles, 
say E = 0.01, the simple first-order solution should give accurate results. 
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